Arithmetic intersection on GSpin Rapoport–Zink spaces
نویسندگان
چکیده
منابع مشابه
Arithmetic Intersection Theory on Deligne-mumford Stacks
In this paper the arithmetic Chow groups and their product structure are extended from the category of regular arithmetic varieties to regular Deligne-Mumford stacks proper over a general arithmetic ring. The method used also gives another construction of the product on the usual Chow groups of a regular Deligne-Mumford stack.
متن کاملArithmetic Intersection Theory on Flag Varieties
Let F be the complete flag variety over SpecZ with the tautological filtration 0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = E of the trivial bundle E over F . The trivial hermitian metric on E(C) induces metrics on the quotient line bundles Li(C). Let ĉ1(Li) be the first Chern class of Li in the arithmetic Chow ring ĈH(F ) and x̂i = −ĉ1(Li). Let h∈Z[X1, . . . , Xn] be a polynomial in the ideal 〈e1, . . . , en〉 ge...
متن کاملOn Intersection Sets in Desarguesian Affine Spaces
Lower bounds on the size of t-fold blocking sets with respect to hyperplanes or t-intersection sets in AG(n, q) are obtained, some of which are sharp.
متن کاملOn the Arithmetic Self-intersection Number of the Dualizing Sheaf on Arithmetic Surfaces
We study the arithmetic self-intersection number of the dualizing sheaf on arithmetic surfaces with respect to morphisms of a particular kind. We obtain upper bounds for the arithmetic self-intersection number of the dualizing sheaf on minimal regular models of the modular curves associated with congruence subgroups Γ0(N) with square free level, as well as for the modular curves X(N) and the Fe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Compositio Mathematica
سال: 2018
ISSN: 0010-437X,1570-5846
DOI: 10.1112/s0010437x18007108